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Abstract

The chiralN-propionyl-2-imidazolidinones were synthesized in three steps fromL-valinol andL-phenylalaninol
and the aldol reaction of their boron enolate with aldehydes proceeded with high diastereoselectivity. © 2000
Elsevier Science Ltd. All rights reserved.
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The asymmetric aldol reaction has become a major tool for the asymmetric C–C bond construction.1

Among the developments of highly stereoregulated aldol reactions, the use of the Evans’�-amino acid-
derived oxazolidinones1as the chiral auxiliaries is one of the most straightforward and efficient strategies
in organic synthesis.2 In connection with our effort to prepare various 2-imidazolidinones,3 we have
previously developed interesting 2-imidazolidinones2aand2b from L-valine andL-phenylalanine, which
combine structural features of similar oxazolidinones1a and1b.3a This letter reports the utility of2 as
the chiral auxiliaries in highly diastereoselective aldol reactions, which is proven to be efficient for boron
enolates.

Evans’ 2-oxazolidinone methodology in aldol reactions has some limitations suffering from nu-
cleophilic ring opening of the oxazolidinone ring in the sterically congested aldol adduct such
as �,�-disubstituted�-hydroxycabonyl units to lead to the corresponding oxazinedione.4 The 2-
imidazolidinone, (4R,5S)-1,5-dimethyl-4-phenyl-2-imidazolidinone, was reported to be a successful chi-
ral auxiliary avoiding such a nucleophilic ring opening in aldol reactions.5 Therefore, we expected the
related 2-imidazolidinone2 to have the similar resistance to nucleophilic ring opening.6 In addition, the
compound2, which is closely related to1, has been used with the hope that the phenyl chromophore
present in the 2-imidazolidinone ring could facilitate reaction monitoring and product isolation.
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In general, 2-imidazolidinones are prepared from the cyclization of the corresponding 1,2-diamines
with phosgene7 or its derivatives.8 This reaction, however, causes the side reaction such as polymeri-
zation, and an access to an appropriate range of optically pure diamines is restricted. As a result, the
diversity of the synthetically useful 2-imidazolidinones has remained severely limited.

Scheme 1.

However, the 2-imidazolidinones2a (mp: 80–82°C, [�]D
18 �26.9 (c 0.85, CHCl3)) and 2b (mp:

115–117°C, [�]D
18 �43.3 (c 0.55, CHCl3)) were easily prepared in two simple steps (addition to

isocyanate, and cyclization)3a starting from readily availableL-valinol andL-phenylalaninol, respectively
(Scheme 1). We chose theN-propionyl derivatives for examination of the auxiliary in aldol reactions.
Thus, acylation of 2-imidazolidinones2 with 4.0 equiv. of propionyl chloride under 2.0 equiv. oft-BuOK
at room temperature furnished theN-propionyl-2-imidazolidinones in high yield (6a: 89%, [�]D

18 +35.1
(c 1.2, CHCl3), 6b: 91%, [�]D

18 +37.7 (c 1.9, CHCl3)).10 Aldol reaction of6 with a representative
series of aldehydes (1.2 equiv.) was initially examined. TheZ-enolate of6 was generated upon treatment
with n-Bu2BOTf (1.1 equiv.) followed by diisopropylethylamine (1.2 equiv.) in CH2Cl2 in an ice bath.
Treatment of the enolate with the appropriate aldehydes provided the desired aldol adducts7–12 in good
yields (Scheme 2).11 Thesyn/anti relative stereochemistry of aldol adducts may be assigned on the basis
of 1H NMR vicinal coupling constants.12 For the compounds7–12, theJ(20,30) values were in the range
of 2.1–3.3 Hz, consistent with thesynstereochemistry. The absolute stereochemistry of the aldol product
was confirmed by NaOH hydrolysis of10 to furnish the enantiomer of the known carboxylic acid13
along with the chiral auxiliary which could be recycled (Scheme 3).2d The results summarized in Table 1
illustrate the excellent diastereofacial selection in these reactions. This was the expected stereochemistry
and shows that2 gives the same aldol product as the corresponding Evans’N-acyl oxazolidinone. From
the observed diastereoselectivities, we propose that this reaction should be complete via a kineticZ-boron
enolate generation and the similar coordinated transition state model between boron enolate and aldehyde
as in Evans’ system.2,13

Scheme 2.

In conclusion, we have successfully shown that the reagent2a and2b are highly diastereoselective
chiral enolate equivalents for the aldol reactions. Also, we have developed the direct synthetic route
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Scheme 3.
Table 1

Aldol reaction ofN-propionyl-2-imidazolidinones6

of N-acyl-2-imidazolidinones in three steps from chiral 1,2-aminoalcohols.14 The extension to other
asymmetric reaction will be reported in due course.15
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